首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24355篇
  免费   4067篇
  国内免费   3106篇
化学   17837篇
晶体学   258篇
力学   1649篇
综合类   237篇
数学   2878篇
物理学   8669篇
  2024年   31篇
  2023年   406篇
  2022年   485篇
  2021年   724篇
  2020年   916篇
  2019年   924篇
  2018年   761篇
  2017年   663篇
  2016年   1144篇
  2015年   1193篇
  2014年   1369篇
  2013年   1802篇
  2012年   2106篇
  2011年   2310篇
  2010年   1521篇
  2009年   1514篇
  2008年   1569篇
  2007年   1407篇
  2006年   1417篇
  2005年   1192篇
  2004年   1075篇
  2003年   857篇
  2002年   861篇
  2001年   737篇
  2000年   551篇
  1999年   496篇
  1998年   418篇
  1997年   356篇
  1996年   359篇
  1995年   339篇
  1994年   320篇
  1993年   245篇
  1992年   258篇
  1991年   222篇
  1990年   194篇
  1989年   158篇
  1988年   99篇
  1987年   95篇
  1986年   83篇
  1985年   85篇
  1984年   50篇
  1983年   50篇
  1982年   42篇
  1981年   26篇
  1980年   19篇
  1979年   12篇
  1976年   7篇
  1975年   7篇
  1971年   6篇
  1957年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
62.
Polyimides (PI's) with low-dielectric constant and excellent organic solubility have broad application prospects in the electronic field. Herein, this study designed a series of novel, low dielectric, organic soluble PI films by creatively introducing fluorene and pyridine ring into diamine monomers. Because of the noncoplanar structure of fluorenyl and the polarization of pyridine ring, PI films achieved a low-dielectric constant (2.22–3.09 at 10 MHz) and excellent organic solubility. Even in some organic solvents with low-boiling points, these PI films still exhibited outstanding solubility. In addition, all the films possessed high-tensile strength (≈120 MPa) and excellent optical transparency (>70%, 450 nm). It was worth noting that the glass transition temperature of films was all above 280°C and 5% weight loss temperature (T5%) was at 486–553°C. In general, the novel high-performance low-dielectric PI films are expected to be used in the field of microelectronics.  相似文献   
63.
Using Reaction Mechanism Generator (RMG), we have automatically constructed a detailed mechanism for acetylene pyrolysis, which predicts formation of polycyclic aromatic hydrocarbons (PAHs) up to pyrene. To improve the data available for formation pathways from naphthalene to pyrene, new high‐pressure limit reaction rate coefficients and species thermochemistry were calculated using a combination of electronic structure data from the literature and new quantum calculations. Pressure‐dependent kinetics for the CH potential energy surface calculated by Zádor et al. were incorporated to ensure accurate pathways for acetylene initiation reactions. After adding these new data into the RMG database, a pressure‐dependent mechanism was generated in a single RMG simulation which captures chemistry from C to C. In general, the RMG‐generated model accurately predicts major species profiles in comparison to plug‐flow reactor data from the literature. The primary shortcoming of the model is that formation of anthracene, phenanthrene, and pyrene are underpredicted, and PAHs beyond pyrene are not captured. Reaction path analysis was performed for the RMG model to identify key pathways. Notable conclusions include the importance of accounting for the acetone impurity in acetylene in accurately predicting formation of odd‐carbon species, the remarkably low contribution of acetylene dimerization to vinylacetylene or diacetylene, and the dominance of the hydrogen abstraction CH addition (HACA) mechanism in the formation pathways to all PAH species in the model. This work demonstrates the improved ability of RMG to model PAH formation, while highlighting the need for more kinetics data for elementary reaction pathways to larger PAHs.  相似文献   
64.
New multifunctional materials with both high structural and gas barrier performances are important for a range of applications. Herein we present a one‐step mechanochemical process to prepare molybdenum disulfide (MoS2) nanosheets with hydroxy functional groups that can simultaneously improve mechanical strength, thermal conductivity, and gas permittivity of a polymer composite. By homogeneously incorporating these functionalized MoS2 nanosheets at low loading of less than 1 vol %, a poly(vinyl alcohol) (PVA) polymer exhibits elongation at break of 154%, toughness of 82 MJ/m3, and in‐plane thermal conductivity of 2.31 W/m K. Furthermore, this composite exhibits significant gas barrier performance, reducing the permeability of helium by 95%. Under fire condition, the MoS2 nanosheets form thermally stable char, thus enhancing the material's resistance to fire. Hydrogen bonding has been identified as the main interaction mechanism between the nanofillers and the polymer matrix. The present results suggest that the PVA composite reinforced with 2D layered nanomaterial offers great potentials in packaging and fire retardant applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 406–414  相似文献   
65.
The development of high-efficiency electrocatalysts with low costs for the oxygen evolution reaction (OER) is essential, but remains challenging. Herein, a new synthetic process is proposed to prepare Ni3S4 particles embedded in N,P-codoped honeycomb porous carbon aerogels (Ni3S4/N,P-HPC) through a hydrogel approach. The preparation of Ni3S4/N,P-HPC begins with the sol–gel polymerization of tripolyphosphate, chitosan, and guanidine polymer that contains metal-binding sites, allowing for the uniform incorporation of Ni ions into the gel matrix, freeze-drying, and subsequent carbonization under an inert atmosphere. This synthesis resolves difficulties in synthesizing the pure Ni3S4 phase caused by the instability of Ni3S4 at high temperature, while affording good control of the porous structure and N,P-doping of carbon aerogels. The synergy between the structural advantages of N,P-carbon aerogels (such as easily accessible active sites, high specific surface area, and excellent electron transport) and the intrinsic electrochemical properties of Ni3S4 result in the outstanding OER performance of Ni3S4/N,P-HPC, with overpotentials as low as 0.37 V at 10 mA cm−2. The work outlined herein offers a simple and effective method for the development of carbon-based electrocatalysts for renewable energy conversion.  相似文献   
66.
A new cosensitization photoelectrochemical (PEC) strategy was established by using a donor–acceptor-type photoactive material, poly{4,8-bis[5-(2-ethylhexyl)thiophen-2-yl]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophene-4,6-diyl} (PTB7-Th), as a signal indicator, which was cosensitized with bis(4,4′dicarboxyl-2,2′-bipyridyl)(4,5,9,14-tetraazabenzo[b]triphenylene)ruthenium(II) ([Ru(dcbpy)2dppz]2+) embedded in the grooves of the DNA duplex and fullerene (nano-C60) immobilized on the surface of DNA nanoflowers for microRNA assay. [Ru(dcbpy)2dppz]2+ and nano-C60 could effectively enhance the photoelectric conversion efficiency (PCE) of PTB7-Th as a result of well-matched energy levels among nano-C60, [Ru(dcbpy)2dppz]2+ and PTB7-Th, leading to a clearly enhanced photocurrent signal. Meanwhile, a target recycling magnification technique based on duplex-specific nuclease was applied in this work to obtain higher detection sensitivity. The proposed biosensor demonstrated excellent analytical properties within a linear detection range of 2.5 fm to 2.5 nm and a limit of detection down to 0.83 fm . Impressively, this cosensitization PEC strategy offers an effective and convenient avenue to significantly improve the PCE of a photoactive material, resulting in a remarkably improved photocurrent signal for ultrasensitive and highly accurate detection of various targets.  相似文献   
67.
The deoxyfluorination of alcohols is a fundamentally important approach to access alkyl fluorides, and thus the development of shelf-stable, easy-to-handle, fluorine-economical, and highly selective deoxyfluorination reagents is highly desired. This work describes the development of a crystalline compound, N-tosyl-4-chlorobenzenesulfonimidoyl fluoride (SulfoxFluor), as a novel deoxyfluorination reagent that possesses all of the aforementioned merits, which is rare in the arena of deoxyfluorination. Endowed by the multi-dimensional modulating ability of the sulfonimidoyl group, SulfoxFluor is superior to 2-pyridinesulfonyl fluoride (PyFluor) in fluorination rate, and is also superior to perfluorobutanesulfonyl fluoride (PBSF) in fluorine-economy. Its reaction with alcohols not only tolerates a wide range of functionalities including the more sterically hindered alcoholic hydroxyl groups, but also exhibits high fluorination/elimination selectivity. Because SulfoxFluor can be easily prepared from inexpensive materials and can be safely handled without special techniques, it promises to serve as a practical deoxyfluorination reagent for the synthesis of various alkyl fluorides.  相似文献   
68.

Consider the following nonparametric model: \(Y_{ni}=g(x_{ni})+ \varepsilon _{ni},1\le i\le n,\) where \(x_{ni}\in {\mathbb {A}}\) are the nonrandom design points and \({\mathbb {A}}\) is a compact set of \({\mathbb {R}}^{m}\) for some \(m\ge 1\), \(g(\cdot )\) is a real valued function defined on \({\mathbb {A}}\), and \(\varepsilon _{n1},\ldots ,\varepsilon _{nn}\) are \(\rho ^{-}\)-mixing random errors with zero mean and finite variance. We obtain the Berry–Esseen bounds of the weighted estimator of \(g(\cdot )\). The rate can achieve nearly \(O(n^{-1/4})\) when the moment condition is appropriate. Moreover, we carry out some simulations to verify the validity of our results.

  相似文献   
69.
Lv  Minli  Zhao  Peng  Zhuo  Liangang  Liao  Wei  Wang  Hailin  Yang  Xia  Wang  Jing  Wang  Guanquan  Song  Hu  Feng  Yue  Chen  Yue  Yang  Yuchuan  Wei  Hongyuan 《Journal of Radioanalytical and Nuclear Chemistry》2019,319(1):159-166

Gastrin releasing peptide receptors (GRPRs) are one of the most interesting targets over expressed in various tumors. Due to the superior potential of the GRPR antagonist analogs, they have been studied in the tumor radio imaging and therapy field. However, typical antagonists suffered the shortcomings of no internalization and poor binding affinity which hampered their applications in radiotherapy. Therefore, we attempted to introduce Oligoarginines (cell penetrating peptides) to RM26, aiming to increase the binding affinity or even trigger the internalization of the peptides on cells. The results showed Arg6 as the most potent CPP, significantly enhanced the binding avidity of RM26 to the GRPR.

  相似文献   
70.
Journal of Radioanalytical and Nuclear Chemistry - In this study, the UiO-66/Fe3O4/GO composite was prepared by one step method for removal of cesium ions (Cs+) in water and exhibited excellent...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号